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Disclaimer 
This deliverable describes the work and findings of the AI-Based Privacy-
Preserving Big Data Sharing for Market Research (Anonymous Big Data 
(ANITA)) project. 

The authors of this document have made every effort to ensure that its 
content was accurate, consistent and lawful. However, neither the project 
consortium as a whole nor the individual partners that implicitly or 
explicitly participated in the creation and publication of this deliverable are 
responsible for any possible errors or omissions as well as for any results 
and actions that might occur as a result of using the content of this 
document. 
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1 Summary 
In the era of big data Large amounts of high dimensional data make it 
difficult for humans to extract relevant features that could be the basis for 
common mathematical models, such as Bayesian models or differential 
equations. Deep learning models are able to identify and extract relevant 
features from the data on their own, offering new opportunities in 
domains such as autonomous driving or speech recognition. Nevertheless, 
there are risks coming with deep learning that creators of such models 
should be aware of. One particular risk, when dealing with sensitive data, is 
the threat of leaking sensitive information during inference. Approaches to 
mitigate this privacy risk come with trade-offs on different aspects, such as 
accuracy or efficiency. One approach to, first, quantify and, secondly, 
mitigate the risk of leaking sensitive information is the implementation of 
differential privacy into deep learning models. 

The techniques that implement differential privacy into deep learning 
models can be divided into three categories, cf. [1]: (i) perturbation of the 
learned model parameters, (ii) perturbation of the training dataset; and 
(iii) mimic learning, i.e. the indirect exposure of the model to the sensitive 
data. In all of the afore-mentioned categories privacy-preserving 
techniques implement differential privacy by introducing random noise 
into the model. 

Techniques that perturb the learned model parameters offset the weights, 
that a deep learning model learns during the training phase, by random 
noise. Techniques in this category achieve accurate and private results. 
They are also the most researched ones and are applicable to a wide range 
of deep learning tasks and architectures. 

Techniques that perturb the training dataset are agnostic of the deep 
learning model itself. The noise is added to the original sensitive data and 
the models are only trained on this noisy data. While techniques in this 
category are widely applicable and the reported results are accurate, 
research about techniques in this category is sparse. 

Mimic learning techniques work in two steps. First, an ensemble of models 
is trained on the sensitive data. Then, these models label a set of 
insensitive data and inject noise into the labels. The final model is trained 
on this noisy set. The indirect exposure of the final model to the sensitive 
data and the noisy labels in the insensitive dataset enforce privacy. While 
mimic learning techniques achieve accurate and private results, they are 
restricted to classification tasks. 

DP is a successful privacy concept to quantify and mitigate the risk of 
leaking sensitive information in deep learning models. This concept is 
implemented into deep learning models by the introduction of random 
noise. The resulting privacy-preserving models then have a lower privacy 
risk, while losing some of their accuracy and efficiency. 
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2 Introduction 
Deep neural networks have recently gained a lot of attention in- and 
outside of the research community. As one of the most successful 
approaches of machine learning, deep learning is applied to various tasks 
where the vast amount of data or the high dimensionality makes it difficult 
to create a mathematical model based on hand-designed features. The 
translation of text or the transcription of speech are examples of tasks 
where it is hard to extract the relevant features and to build mathematical 
models. When given a large amount of data, neural networks are able to 
identify and extract relevant features and leverage them for classification 
or generation of previously unseen data. As such, neural networks are 
models that can be applied to a variety of tasks. They are successful in, 
among other domains, computer vision, speech recognition, natural 
language processing and healthcare. 

The building blocks of a neural network are neurons. Neurons are affine 
functions1 with multiple numbers as inputs and a single number as the 
output. Each input is contributing to the output with a certain weight. In a 
neural network, these neurons are arranged in layers. The first layer is the 
interface to the network where the neurons obtain the data as input. The 
result of each neuron in this layer is passed over as input to the neurons in 
the subsequent layer, being further transformed and passed over to the 
next layer. This way only neurons in consecutive layers of the network are 
connected. The output of the final layer of neurons is the overall output of 
the network. Despite this simple architecture, neural networks are able to 
approximate a huge set of non-affine functions. Figure 1 depicts the 
architecture of the neural network.  

 
Figure 1: The basic structure of a neural network. The input layer followed by a so-called hidden layer 

and the output layer. 

The structure of the network, i.e., the number of neurons, the number of 
layers, and the weight the neurons assign to each of their inputs 

 
1 An affine function is a function of the form f(x1, x2, x3) = w1*x1 + w2*x2 + w3*x3 + b. Each wi can 
be considered as the weight of the input xi for the output, quantifying the impact that 
input has on the final output. 
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determine the output of the network when exposed to input data. Neural 
networks model a task by approximating a certain function. For example, 
when a dataset of images of cats and dogs should be classified as cats or 
dogs, the function should output the label "cat" for all cat images and the 
label "dog" for all dog images. While the creator of the neural network 
model fixes the structure, the adjustment screws, to most accurately 
approximate the desired function, are the weight parameters of each 
neuron. 

In a first phase the network is exposed to training data with known output. 
The weight parameters are adjusted, such that the transformation, applied 
by the neural network to the input, reconstructs the output as well as 
possible. The adjustments are determined by minimizing the error 
between the predicted and the real output. This error is called the loss. 
There are specific optimization algorithms to calculate these adjustments 
for each weight, most popular is the stochastic gradient descend (SGD) 
algorithm. After the learning phase, the network is set up for inference 
and, when exposed to data that it has never seen before, it predicts the 
output based on what was learned from the training data in the first 
phase. 

The purpose of a neural network model is to efficiently infer accurate 
predictions on unseen data. So, to some extent they will be exposed to the 
outside world. Either they are deployed so the model users are only able to 
submit their input and receive a predicted output (i.e., black box), or the 
model is shared in its entirety, together with the weight parameters 
learned during the training phase (i.e., white box). While the training data 
is never directly accessible, both cases still pose threats to leaking sensitive 
information from the original training data. Adversaries are able to gain 
that information from black box models by constructing certain inputs 
and collating the outputs. White box models are even more prone to 
leaking sensitive information, because adversaries can retain information 
about the training data directly from the observed weight parameters of 
each neuron. The survey [2] conducted by Mireshghallah et al. describe 
adversary attacks on neural network models in detail. 

To quantify and mitigate the privacy risk of adversary attacks on the 
network, differential privacy (DP), being one of particularly successful 
concepts of privacy, is implemented into the neural network models. 
Rather than quantifying the amount of anonymity in a dataset, as with k-
anonymity2, DP quantifies the maximum impact of a single datapoint in 
the input data on the output of a process. This makes differential privacy 
particularly useful in the case of deep learning models. When training a 
differential private deep learning model, each access to the training data 
leaks information into the model, resulting in an accumulated privacy loss. 
The goal is to keep this loss within certain predefined bounds - the privacy 
budget ε. 

 
2 In a k-anonymous dataset there are k "similar" data points for each single data point.  
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The aim of this deliverable is to review published privacy-preserving 
techniques for deep learning. In section 3 techniques to introduce DP into 
deep learning models are reviewed together with applications of them to 
neural network models for certain tasks. Section 4 concludes the 
deliverable and sums up the insights from the published research.  
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3 Privacy-Preserving Techniques for Deep Learning 
Differential privacy is applied to deep learning models to mitigate the risk 
of leaking sensitive information about the training data. During the 
training phase each access to the data yields a certain privacy loss. This 
allows the creator of a model to assess the total privacy loss of a model 
before releasing it. And the other way around, the creator is also able to 
quit training the model as soon as it exceeds a certain privacy budget. 
However, this can result in a less accurate model.  

A privacy-preserving technique is a way to minimize the privacy loss as 
quantified by DP for a deep learning model. Models that are trained with 
applying privacy-preserving techniques are called privacy-preserving (PP) 
models. The ones that are trained without applying any particular 
technique to minimize the loss are called non-private. 

Keeping the privacy loss for each access to the training data low is 
important to create an accurate model within certain privacy bounds. This 
loss is highly dependent on the training procedure. To mitigate the impact 
of a single data point on the optimization of the network, usually, DP is 
implemented by injecting perturbations of random noise into the model.  

Random noise can be injected into the model in different ways. Based on 
the way the noise is injected into the model, Boulemtafes et al. [1] 
categorize PP models into three categories: (i) differential private model 
parameters, (ii) differential private input data, and (iii) differential private 
mimic learning. The authors also propose three performance metrics to 
evaluate how well a privacy-preserving model performs. These are the 
effectiveness (or the prediction accuracy), the training efficiency and the 
privacy of a model. 

The three categories introduced in [1] are categories of privacy-preserving 
techniques that introduce DP into deep learning models. In this section, 
techniques that belong to these categories, are reviewed alongside 
examples of their applications. The techniques are applied to deep 
learning models for different classification tasks and are evaluated 
according to the performance metrics suggested in [1]. 

3.1 Differential Private Model Parameters 
Neural networks are able to learn from data by adjusting their internal 
weight parameters according to the error between the real output in the 
training data and the predicted output. One category of privacy-
preserving techniques to introduce DP into a deep learning model is the 
injection of noise into the weight parameters. There are three main ways 
to do that: (i) the direct injection into the parameters, (ii) the perturbation 
of the loss function and (iii) a combination of both. 

The direct injection of noise into the weight parameters can be inflicted at 
different stages of the training phase. The most straightforward way is to 
add random noise to the weight parameters either after each step of the 
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optimization procedure, or after the training is completed (cf. [3]). More 
complex is the technique to inject noise with a modified optimization, as 
proposed by Abadi et al. in [4]. The authors suggest a modified version of 
the SGD optimization algorithm that reduces the impact of single 
datapoints and injects randomness into the optimization procedure. In the 
following paragraphs we discuss the techniques proposed in [3] and [4]. 

In [3], Sei et al. construct two PP models, called "AnonymizedLearning" and 
"LearningFirst", and evaluate them on the ADULT3 dataset for salary 
estimation. Both models preserve privacy by the injection of noise into the 
model parameters at different stages of the training. In the 
"AnonymizedLearning" model, Laplace noise is added after each training 
step whereas in "LearningFirst" model, the noise is added to the 
parameters after the training is completed. While both models achieve 
high accuracy in the salary estimation task, "AnonymizedLearning" 
outperforms "LearningFirst" on a small privacy budget (i.e., ε=1) and vice 
versa on larger privacy budgets (i.e., ε=10 or ε=100). Sei et al. [3] report that 
for most values of the privacy budget models constructed with both 
techniques perform better than a baseline model. 

Abadi et al. [4] approach the private classification tasks of MNIST4 and 
CIFAR-105 datasets by incorporating DP into the optimization algorithm. At 
each step the influence of the training data is controlled by randomly 
sampling a set from the training data, called a lot. The gradient is 
computed on each element of the lot, clipped and averaged on this lot, 
then noise is added to the gradient. The authors also introduce a 
technique to tightly estimate the privacy loss during training. Such 
techniques are called privacy accountants and commonly only give loose 
bounds on the privacy loss. The so-called moments accountant introduced 
in [4] gives better bounds on the privacy loss. 

Compared to non-private models, the authors achieved an accuracy of 1.3% 
less for MNIST and 7% less for CIFAR-10, both with a privacy budget of ε=8. 
In case of MNIST, a reduction of the privacy budgets to ε=4 or ε=0.25 results 
in a drop of the accuracy by 3.3% and 8.3% respectively, when compared to 
the baseline. The prediction accuracy of CIFAR-10 drops by 10% for a 
privacy budget of ε=4 and by 13% for ε=2, both again compared to the 
baseline accuracy. 

As reported by Abadi et al., the accuracy seems to be more dependent on 
the parameters, such as noise or batch size, rather than on the structure of 

 
3 The ADULT dataset contains 1994 census data together with the information if a person’s 
income is above or below $50k/year. Given the census data of a person, the task is to 
predict whether or not the income is above $50k/year. 
4 The MNIST dataset contains images of handwritten digits from 0 to 9. Given an image, 
the task is to predict the number in that image. 
5 The CIFAR-10 dataset contains 32x32 pixel images of 10 different classes (e.g., airplanes, 
cats, dogs, cars, ships, etc.) Given an image, the task is to predict the class that image 
belongs to. 
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the network. Also, the injection of noise into the gradients, in every step of 
the training procedure, results in a dependence of the overall privacy cost 
on the number of training epochs. On the one hand, high accuracy can 
only be ensured by a large number of epochs, on the other hand, a large 
number of epochs leads to a bigger overall privacy loss. 

The direct injection of noise into the weight parameters is a 
straightforward approach. That is also the reason that, especially, the 
differential private version of SGD is widely applied to construct privacy-
preserving models. Another technique to construct privacy-preserving 
models is the injection of noise into the loss function. The loss function 
calculates the error between the real output in the training dataset and 
the output predicted by the neural network. First, this function is 
approximated with polynomials, such as Taylor or Chebyshev polynomials, 
and then the coefficients of the polynomials are perturbed. This way 
random noise is injected into the loss function. In the following paragraphs 
we discuss applications of this technique to different models. 

Phan et al. [5] apply the perturbation of the loss function to an auto-
encoder by approximating the reconstruction function with Taylor 
polynomials and injecting Laplace noise into the coefficients. The results 
were accurate and robust against changes in the privacy budget (between 
ε=0.1 and ε=6.4). However, in [6] Rahman et al. criticised this approach for 
the lack of meaningful privacy guarantees and that the approach cannot 
be easily transferred to other models. 

A similar approach is conducted in [7] to privately classify data in the 
MNIST dataset with a convolutional deep belief network. Laplace noise is 
injected into the coefficients of a polynomial approximation 
(i.e., Chebyshev expansion) of a nonlinear loss function. This approach 
shows better accuracy than [4] and [5] on datasets of different sizes and for 
various values of the privacy budget (between ε=0.2 and ε=8). It is also 
robust against changes in the privacy budget and, unlike in [4], the overall 
privacy loss is independent of the number of training epochs, which 
makes this approach suitable for larger datasets. 

As previously discussed, models trained with direct noise injection into 
weight parameters or trained with a perturbed loss function yield 
acceptable results for various privacy budgets. Still, there are situations 
where higher accuracy or better mitigation of the privacy risk is necessary. 
To achieve this, more complex approaches, that combine the two 
techniques with each other, are applied to the models.  

Phan et al. [8] combine both the perturbation of weight parameters and of 
the objective function in their Adaptive Laplace Mechanism to privately 
classify images in MNIST and CIFAR-10. Not only do the authors combine 
both techniques, but also, they directly inject noise into the weight 
parameters in a more differentiated way, which they call adaptive 
redistribution of noise. The magnitude of the noise injected into the 
parameters of each neuron is determined by their relevance for the final 
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output. This relevance is calculated by a mechanism called Layer-wise 
Relevance Propagation (LRP). More noise is injected into the weight 
parameters of less relevant neurons, leading to higher prediction accuracy. 
Additionally, the loss function is Taylor-approximated and noise is injected 
into the polynomial coefficients. For different privacy budgets, this model 
predicted results more accurately than the models constructed in [4]. 
Small to large privacy budgets were tested, with ε between 0.2 and 8 for in 
case of MNIST and between 2.5 and 8 for CIFAR-10. Also, the consumption 
of the privacy budget is independent from the number of training epochs, 
being an advantage over [4] for large datasets. This approach is applicable 
to other networks and activation functions, as well. Still, in [9] Shen et al. 
reported potential flaws. While noise is injected during the training phase, 
for humans the noisy data remained recognisable. The noise injection 
mechanism also has minor downsides in terms of efficiency.  

In [10] Adesuyi et al. extend the technique of [8] and apply it to the private 
classification in the Wisconsin Diagnosis Breast Cancer (WDBC) dataset. In 
addition to the relevance of the neurons, the amount of noise injected into 
the weight parameters varies with the given privacy budget. A small 
budget yields large noise and vice versa. Also, noise is injected into the loss 
function similarly to [8]. The authors report a loss of accuracy of 4.5% for a 
small privacy budget of ε=1.1 and an accuracy-loss of 0.5% for a large 
privacy budget of ε=11, both, when compared to a non-private version. 

The injection of noise into model parameters, either directly or indirectly, 
via the loss function, is a widely applicable approach. The above reviewed 
PP models only minimally lose in effectiveness compared to the non-
private versions. The models keep track of the consumed privacy budget 
during training by means of a privacy accountant. It can be beneficial to 
use the moments accountant, as proposed in [4], for privacy accounting to 
get tighter bounds on the overall privacy loss. The independence of the 
privacy budget consumption from the number of training epochs, as is the 
case in [7], [8], is also an important feature of efficient PP models.  Adaptive 
redistribution ( [8], [10]) is a very promising approach to close the gap in 
prediction accuracy between private and non-private models even more. 
Still, the complexity of the noise injection mechanism and the points in the 
training phase where noise is injected can impact the training efficiency.  

3.2 Differential Private Input Data 
The goal of privacy in deep learning is to minimize the risk of leaking 
information about the training data. One obvious, but naive, privacy-
preserving technique is the injection of noise directly into the original 
training dataset to create a private version of that dataset. The neural 
network is then trained on that dataset, resulting in a PP model. However, 
to obtain sensible privacy guarantees this way, the amount of noise that 
has to be injected is large, making the data rather useless. 

The noise has to be injected carefully in order to retain the utility of the 
training data after the perturbation. To achieve this, Soria-Comas et al. 
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propose, in [11], a combination of the perturbation of the input data with 
microaggregation-based k-anonymity. Microaggregation modifies the 
original data by, first, creating clusters of k records, that are as similar as 
possible, and then, replacing all of them by a record, typically, the centroid 
record, that represents the cluster. DP is then enforced by injecting noise 
into the centroid records and training a neural network on this private 
input data. This technique increases the utility of the input data, when 
compared to the above-mentioned naive approach of perturbing each 
single record, and results in a more accurate model. 

In [3] Sei et al. apply this technique to a model called "AnonymizingFirst". 
The model achieved high accuracy when evaluated on the task of salary 
prediction on the ADULT dataset. The authors compare this model to two 
other models that preserve privacy via the perturbation of the weight 
parameters, namely "AnonymizedLearning" and "LearningFirst" that were 
described in section 3.1. For small privacy budgets (i.e., ε=1) 
"AnonymizingFirst" outperformed these approaches. However, for large 
budgets (i.e., ε=100) it performed worse than "AnonymizedLearning" and 
"LearningFirst" models. 

The naive injection of noise into the training dataset usually leads to either 
inaccurate or non-private results. By combining this naive perturbation of 
the input data with microaggregation-based k-anonymity ( [11]), in [3] Sei et 
al. report both accurate and private results for small privacy budgets. As 
this technique is applied to a dataset and not directly to a model, it is 
applicable to a wide range of deep learning tasks. However, compared to 
the other privacy-preserving techniques, published research on this 
technique is scarce. 

3.3 Differential Private Mimic Learning 
In mimic learning the original training data are protected by introducing 
an extra layer between the data and the model. A teacher model is trained 
on the original labelled dataset, and is then used to annotate a large 
unlabelled dataset. A so-called student model is the final product of this 
privacy-preserving technique. The student model is trained on the dataset 
annotated by the teacher. This way the student has only indirect access to 
the original labels by means of the teacher model. 
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Figure 2: The first step in the training of the PATE scheme. An ensemble of teacher networks is 

trained on disjoint subsets of the original dataset. One particular individual is known by only one 
teacher network. 

In [12] Papernot et al. describe "Private Aggregation of Teacher Ensembles" 
(PATE). An ensemble of teacher models is trained on disjoint subsets of the 
sensitive original data (see Figure 2). Then, the teachers vote together on 
the label for each datapoint of an unlabelled non-sensitive dataset. To 
enforce privacy, Laplace noise is added to the count of votes for each class. 
Finally, each datapoint is annotated with the label of the class with the 
majority of votes. The student model is then trained on that non-sensitive 
dataset with the labels assigned by the teacher ensemble (see Figure 3). 

 
Figure 3: The second step in PATE is the training of a student model. The student model is only 

indirectly exposed to the original sensitive data through non-sensitive data labeled by the teacher 
ensemble. 
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The authors compared PP models trained with PATE on the task of 
labelling MNIST and SVHN6 datasets. On the MNIST dataset the PP model 
was around 1% less accurate than the non-private baseline model for both 
privacy budgets with ε between 2.04 and 8.03. The reported accuracy on 
labelling the SVHN dataset was 2% below the baseline result for a large 
privacy budget (i.e., ε=8.19) and almost 11% more inaccurate for a modest 
privacy budget (i.e., ε=5.04). In both cases the non-private baseline is a 
model directly trained on the entire original dataset. The results show that 
the accuracy depends on the privacy budget, however, this dependency is 
minimal in the case of MNIST. 

When compared to the perturbation of model parameters, described in 
section 3.1, PATE protects the individual privacy even if the model is 
released as a white box model. The privacy increases with the number of 
teachers, but, as having more teachers reduces the size of the training set 
for each teacher, a higher number of teachers can negatively influence the 
accuracy. In view of this trade-off the number of teachers has to be chosen 
sensibly. 

Dehghani et al. [13] transfer PATE to a core task in the domain of 
Information Retrieval (IR), namely document ranking. This task is, for 
example, highly relevant for search engines, because documents have to 
be ranked by their relevance for a given query. Large labelled datasets for 
IR tasks are crucial, however, scarce, due to the documents being very 
sensitive. Dehghani et al. apply PATE to document ranking with 
acceptable accuracy and low privacy risk guarantee. Instead of perturbing 
the total vote count of the teachers’ predictions, they inject noise into 
every single teacher’s prediction. 

Mimic learning achieves good results in terms of accuracy for different 
privacy budgets. Additionally, this technique yields a decent privacy 
protection, because the student model never observes the sensitive 
training data. While accuracy and privacy are reported to be acceptable, 
effectiveness and efficiency as well as privacy are sensitive to the chosen 
number of teachers. Due to its architecture, mimic learning is most 
suitable for classification tasks. 

 

  

 
6 The Street View House Numbers (SVHN) dataset contains real world images of house 
numbers obtained from Google Street View. The images are centered around single 
numbers and belong to one of 10 classes, one for each number from 0 to 9. Given an 
image of a house number, the task is to predict the number in the image. 
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4 Conclusion 
This document provides an overview and evaluation of the existing 
privacy-preserving techniques for deep learning. Differential privacy is 
implemented into deep learning models either by imposing it on the 
model parameters, on the input data, or by only indirectly exposing the 
model to the original data via mimic learning. 

The majority of research is carried out in the perturbation of deep learning 
model parameters. This technique is most appealing due to the accuracy 
for moderate privacy budgets, the training efficiency and the wide 
applicability to deep learning models for different tasks. The recent 
advances in adaptive redistribution of noise in [8] and [10] further improve 
the accuracy and the privacy of models with perturbed weight 
parameters. 

The direct perturbation of the input data has been researched very little, 
still, [3] reported good results in an application of this technique. 

Mimic learning is able to produce PP models that can be as accurate as 
models with perturbed weight parameters. This technique can also help in 
situations with scarcely labeled data. However, the applicability of mimic 
learning is restricted to classification tasks.  

Overall, DP methods for Deep Learning are only in their early stages. One 
of the biggest challenges remains finding a good trade-off between 
accuracy and privacy. In the papers discussed here, ε values that provide 
strong guarantees (ε below 1) lead to limited accuracy of the models, and 
the best published results in terms of accuracy used high privacy budgets 
(ε values of 8 and above), which might be too weak for practical purposes. 
Any application of the PP methods currently available thus must evaluate 
whether an acceptable trade-off can be achieved. 
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